Ultrafast demagnetization of FePt:Cu thin films and the role of magnetic heat capacity

Johannes Kimling,1,* Judith Kimling,1 R. B. Wilson,1 Birgit Hebler,2 Manfred Albrecht,2 and David G. Cahill1

1Department of Materials Science and Engineering and Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, USA
2Institute of Physics, University of Augsburg, Universitätstrasse 1, 86159 Augsburg, Germany

(Received 10 September 2014; revised manuscript received 30 October 2014; published 5 December 2014)

The phenomenon of different time scales of ultrafast demagnetization has attracted much attention. This so-called diversity of ultrafast demagnetization has been explained by the microscopic three temperature model (M3TM) and by the Landau-Lifshitz-Bloch model (LLBM). Here, we revisit the basic three temperature model (3TM) and provide a general criterion for explaining the different time scales observed. We focus on the role of magnetic heat capacity, which we find mainly determines the slowing down of the demagnetization time with increasing ambient temperature and laser fluence. In this context, we clarify the role of magnetic heat capacity in the M3TM and compare the 3TM with the LLBM. To illustrate the role of magnetic heat capacity, we present a simulation of ultrafast demagnetization of Ni. Furthermore, we present time-resolved magneto-optic Kerr effect measurements of ultrafast demagnetization and specific heat of FeCuPt from 300 K to close to its Curie temperature. While most of the prior experimental research used high-fluence laser pulses causing sizable temperature excursions of the sample, our experiments involve small temperature excursions, which are crucial for studying the role of magnetic heat capacity in ultrafast demagnetization. Our experimental results corroborate that the slowing down of ultrafast demagnetization is dominated by the increase of the magnetic heat capacity near the Curie temperature.

DOI: 10.1103/PhysRevB.90.224408 PACS number(s): 75.78.Jp, 75.40.Gb, 75.40.Cx, 75.70.–i

I. INTRODUCTION

The field of ultrafast magnetization dynamics is concerned with processes faster than approximately 100 ps [1]. An important problem is the transfer of angular momentum on short time scales, known as ultrafast demagnetization and observed, e.g., in ferromagnetic metals using pump-probe experiments [2]. In their pioneering work, Beaurepaire et al. described the time evolution of the magnetization after laser excitation using a phenomenological three temperature model (3TM) that considers energy exchange between three thermodynamic reservoirs (electrons, phonons, and magnetization) [3]. Thereafter, the problem of magnetization dynamics at fs-time scales was addressed by the theoretical study of Hübner et al. [4]. To date, the number of competing theories of ultrafast demagnetization is still increasing, e.g., in Ref. [5], nine possible mechanisms are summarized. Progress in this field is hampered by the complexity of the theoretical problem and the short time scale that makes experimental tests difficult.

Experiments in the past decade have revealed a “diversity of ultrafast demagnetization” [6], which essentially comprises the following phenomena.

(i) Sub-ps demagnetization followed by ps remagnetization (e.g., in Ni [3], Co [7], and Fe [8]).

(ii) Sub-ps demagnetization followed by a second slower demagnetization step that can extend to approximately 100 ps (e.g., in Gd [9] and Tb [10]).

(iii) Increasing de- and remagnetization time with rising ambient temperature or laser fluence (e.g., in CuCr2Se4 [11], Ni [12], and Gd [13]).

(iv) Transition from (i) to (ii) at a critical ambient temperature or laser fluence (e.g., in Sr2FeMoO6 [14], Ni [15], and FePt [16]).

Phenomenon (i) has been termed “one-step” or “type I” behavior, while phenomenon (ii) is often referred to as “two-step” or “type II” behavior [6, 15]. In the critical regime near the Curie temperature, phenomenon (iii) is also known as “critical slowing down” of magnetization dynamics.

The observation of phenomena (i) through (iv) has been explained by the so-called microscopic three temperature model (M3TM) and by the Landau-Lifshitz-Bloch model (LLBM). The M3TM couples a rate equation for the magnetization to a two-temperature model of phonons and electrons, and includes a spin-flip parameter associated with the Elliot-Yafet theory of spin relaxation [6]. The LLBM is a micromagnetic approach for simulations of a many macrospin system at finite temperature [17, 18].

More recently, higher level 3TM’s have been developed by Ma et al. and by Manchon et al. [19, 20]. Ma et al. use a molecular dynamics approach including thermal coupling between electron, lattice, and magnetization reservoirs via Langevin dynamics [19]. However, they focus on the influence of magnetic and electronic excitations on high strain-rate plastic deformations of magnetic materials, and do not address the “diversity of ultrafast demagnetization” summarized above. The model of Manchon et al. employs a self-consistent random phase approximation to solve the Heisenberg Hamiltonian describing the magnetization reservoir [20]. Manchon et al. derive an electron-spin relaxation rate that is proportional to the cube of the magnetic-order parameter, and thus becomes vanishingly small near the Curie temperature. Although Manchon et al. consider the critical behavior of magnetic heat capacity, they explain phenomena (iii) and (iv) with a reduction of the magnetic order parameter that results in “a weakening of the effective electron-spin interaction (…)” [20].

Here, we focus on the role of magnetic heat capacity in ultrafast demagnetization. In Sec. II, we revisit the basic 3TM and provide a simple criterion for explaining the “diversity of ultrafast demagnetization.” To illustrate the role of magnetic heat capacity, we present a simulation of ultrafast...
demagnetization of Ni. In Sec. III, we report experimental results of the temperature dependence of ultrafast demagnetization and specific heat of Fe_{80}Cu_{10}Pt_{10}. In Sec. IV, we discuss the role of magnetic heat capacity in prior research.

II. THEORY

A. Three temperature model revisited

The phenomenon of ultrafast demagnetization starts with a short laser pulse, typically of Gaussian shape with a FWHM of 50 fs, exciting electrons to high energies (\sim 1 eV) above the Fermi level. Within approximately 10 fs the excited electrons thermalize via electron-electron interactions and begin transferring excess energy to other thermodynamic reservoirs, e.g., via excitation of phonons, spin waves, and spin fluctuations. The 3TM is based on the assumption of three thermodynamic reservoirs: electrons at temperature T_e, phonons at temperature T_p, and magnetization at temperature T_s. The 3TM considers energy exchange between these reservoirs [3]. We note that computation of magnetic properties of itinerant ferromagnets at finite temperatures, as well as evaluation of the temperature of a dynamic spin system are subjects of current research [21,22]. Since in the ferromagnetic transition metals energy transfer between magnetization and phonons is much smaller than energy transfer between magnetization and electrons [19], we neglect the coupling between magnetization and phonons. In this case, the 3TM in one dimension reads

$$C_e \frac{dT_e}{dt} = g_{ep}(T_p - T_e) + g_{es}(T_s - T_e) + \Lambda_e \frac{d^2T_e}{dx^2} + P(t),$$

(1)

$$C_p \frac{dT_p}{dt} = g_{ep}(T_e - T_p) + \Lambda_p \frac{d^2T_p}{dx^2},$$

(2)

$$C_s \frac{dT_s}{dt} = g_{es}(T_s - T_e) + \Lambda_s \frac{d^2T_s}{dx^2},$$

(3)

where C denotes specific heat, g denotes energy transfer coefficient, Λ denotes thermal conductivity, and the subscripts e, p, and s refer to the thermodynamic reservoirs of electrons, phonons, and magnetization. The laser energy is transferred to the electron reservoir with a rate $P(t)$. As discussed below, heat diffusion into the substrate can influence the remagnetization behavior and the second demagnetization step of phenomenon (ii).

The 3TM is based on the assumption that processes involved in ultrafast demagnetization are slow compared to the internal equilibration time of the respective reservoirs (\sim 10 fs for electrons; \sim 1 ps for phonons and magnetization [1]). Consequently, the 3TM cannot be applied to explain sub-ps demagnetization. At longer time scales, the 3TM describes ultrafast demagnetization via the energy transfer coefficient g_{es} between electrons and magnetization, without specifying physical mechanisms responsible for ultrafast transfer of angular momentum. The response of the magnetization reservoir is described via the magnetic heat capacity C_s. According to the theory of critical phenomena, the temperature dependence of magnetization and magnetic heat capacity follow a power law near the Curie temperature [23]. Nanocalorimetric measurements on Ni thin films have shown a broadened peak of the heat capacity at the Curie temperature [24]. Here, we consider the temperature dependence of the magnetic heat capacity C_s using empirical input as discussed in Sec. III B.

Instantaneously after the onset of the laser pulse heating the electron reservoir, the temperature changes of phonons and spins are still zero. It follows from Eqs. (2) and (3) that the ratio R, given by

$$R = \frac{g_{es}C_p}{g_{ep}C_s},$$

(4)
determines which temperature, T_p or T_s, rises faster. Hence R provides a general criterion for distinguishing different time scales of ultrafast demagnetization, which does not depend on microscopic parameters. In the limit of small temperature excursions of the phonon and magnetization reservoirs ($\Delta T/T \ll 1$), $R(t)$ is approximately constant and we find the following criterion.

For $R > 1$, T_p rises faster than T_s; subsequent to the demagnetization process, dominating coupling between electrons and phonons decreases T_p close to $T_p < T_s$ resulting in a fast remagnetization until $T_s = T_p$. This behavior has been termed “one-step” or “type I” demagnetization [phenomenon (i)].

For $R < 1$, T_e lags behind T_p; subsequent to a fast demagnetization process, dominating coupling between electrons and phonons decreases T_e close to $T_p > T_s$ resulting in a second, slower demagnetization step until $T_s = T_p$. This behavior has also been called “two-step” or “type II” demagnetization [phenomenon (ii)].

The ratio R does not depend on the electronic specific heat C_e, since it characterizes the rise of T_p with respect to the rise of T_p providing a case distinction of phenomena (i) and (ii) as well as an explanation for phenomena (iii) and (iv). The electronic specific heat C_e can influence the sub-ps rise of both T_e and T_p. However, if the thermalization time $\tau_{ep} = C_e/g_{ep}$ of electrons is much shorter than the pulse duration, only a small amount of the energy of the laser pulse is stored in the electron reservoir and the sensitivity of the 3TM to C_e after the laser pulse is small. If the rise time of the laser pulse is large compared to τ_{eval}, the sensitivity of the 3TM to C_e is small at all times. In both cases, R describes the ratio of the spin and phonon temperatures at the end of the laser pulse: $R \approx T_s/T_p$.

The above case distinction is based on the assumption of a constant $R(t)$ and does not hold for fluence-dependent measurements that involve sizable temperature excursions of the phonon and magnetization reservoirs ($\Delta T/T \approx 1$) for studying phenomena (iii) and (iv). We note that most prior works used fluence-dependent measurements, which are difficult to analyze due to the unknown temperature dependence of R [6,15,16,25,26]. Roth et al. used both fluence- and temperature-dependent measurements on Ni [15]. However, the temperature-dependent experiments also used a laser fluence of 3.5 \times 10^{-3} J/cm^2. At 300 K this high fluence resulted in a maximum demagnetization of 58%, which corresponds to a maximum temperature rise of approximately 200 K. Over this temperature interval, the magnetic heat capacity of Ni changes by a factor of approximately 2.6 [27]. Consequently, analysis of high laser fluence experiments results in larger uncertainties compared to low laser fluence experiments.
FIG. 1. (Color online) Simulation of the demagnetization behavior of a 15 nm thin Ni layer on a 100 nm SiO$_2$/Si substrate using the phenomenological three temperature model. With increasing temperature (black: $T_0 = 300$ K; red: $T_0 = 450$ K; blue: $T_0 = 600$ K) the time evolution of the spin temperature ΔT_s (solid lines) changes from a fast demagnetization with subsequent fast remagnetization at 300 K to a slow demagnetization in two steps at 600 K. Also shown are the time evolution of the respective electron and phonon temperatures (ΔT_e: dashed lines; ΔT_p: dash-dotted lines).

B. Ultrafast demagnetization of Ni

To illustrate the above case distinction, we apply the 3TM to simulate ultrafast demagnetization of a 15 nm thin Ni layer on a SiO$_2$/Si substrate. We consider a Gaussian heat pulse ($\text{FWHM} = 50$ fs centered around $t = 0$) with a fluence of 42×10^{-6} J cm$^{-2}$ that results in small temperature excursions of the phonon and magnetization reservoirs ($\Delta T/T \ll 1$). We assume that the absorption profile of the heat pulse decays exponentially in the Ni layer using an optical penetration depth of 15 nm. To account for heat diffusion into the substrate, we extend the 3TM to a multilayer model. The relevant model parameters are summarized in Table I. Since the simulations are performed in the weak perturbation limit, the ratio $R(t)$ is constant during ultrafast demagnetization. We consider a temperature-dependent energy transfer coefficient between electrons and phonons taken from Ref. [28], and a temperature-dependent electronic heat capacity taken from Ref. [27], although not of importance in our study as discussed above. The only unknown parameter of the model is the energy transfer coefficient g_{es} between electrons and magnetization. However, for illustrating the above case distinction, it is sufficient to assume a constant $g_{es} = 1 \times 10^{12}$ W m$^{-3}$K$^{-1}$ for every ambient temperature T_0.

Figure 1 shows the simulated time evolution of T_s (dashed lines), T_p (dash-dotted lines), and T_e (solid lines) after laser excitation at three different ambient temperatures (black: $T_0 = 300$ K; red: $T_0 = 450$ K; blue: $T_0 = 600$ K). The Curie temperature of Ni is $T_C \approx 633$ [27]. The results cover the "variety of ultrafast demagnetization" described by phenomena (i) through (iv), as predicted by the respective values of R summarized in Table I. In this simulation, phenomena (iii) and (iv) are caused by the specific heat C_s of the magnetization, which increases significantly when approaching T_C. The parameters g_{ep} and C_p have a weaker temperature dependence that contributes to a decrease of the demagnetization time — the opposite compared to the effect of C_s. Hence this simulation demonstrates the significance of the critical behavior of magnetic heat capacity for phenomena (iii) and (iv) in Ni. If g_{es} decreases with increasing temperature, as predicted in Ref. [20], this will further increase the demagnetization time near the Curie temperature. However, a weakening of the coupling between electron and magnetization is neither required to explain phenomenon (iii) nor phenomenon (iv).

III. EXPERIMENT

A. Experimental details

In comparison to Ni, chemically ordered FePt with Cu additions facilitates experiments for studying the relation between ultrafast demagnetization and magnetic heat capacity as a function of temperature due to a perpendicular magnetic anisotropy and a lower Curie temperature. Thin layers of FePt with Cu additions were fabricated using the following approach: a FePt(4.7 nm)/Cu(0.3 nm) bilayer is deposited at room temperature onto 100 nm thick thermal oxide on Si(100) substrates using dc magnetron sputtering (Ar sputter pressure: 3.5×10^{-3} mbar). Rapid thermal annealing (RTA) is employed to transform the bilayer into the L1$_0$ chemically ordered ternary alloy [29], where the sample is processed for 30 s at 600°C under N$_2$ atmosphere (annealing rate: 400 K/s).

The chemical composition of the resulting ternary Fe$_{46}$Cu$_{46}$Pt$_{48}$ alloy was determined by Rutherford backscattering spectrometry (RBS). In this study, He$^+$ ions at an acceleration energy of 1.7 MeV were used. The structural analysis was performed by x-ray diffraction in Bragg-Brentano geometry using Cu $K\alpha$ radiation, revealing a high degree of chemical L1$_0$ order with strong (001) texture. Layer thicknesses were determined using x-ray reflectometry.

We use time-resolved measurements of the polar magneto-optic Kerr effect (TR-MOKE) to detect the transient magnetic signal after laser excitation of the 5 nm thin Fe$_{46}$Cu$_{46}$Pt$_{48}$ layer. The wavelength of the pump and probe pulses is centered at 783 nm with a FWHM spectral range of ~10 nm. Pump and probe pulses are spectrally separated using the two-tint
approach [30]. Instead of the bandpass filter in the incident probe path and the short-pass filter in front of the photodetector used in Ref. [30], we used two ultrasteep long-pass edge filters with a cutoff of 785 nm. Instead of the long-pass filter in the path of the pump beam used in Ref. [30], we used an ultrasteep long-pass edge filter placed in front of the electro-optic path of the pump beam used in Ref. [30], we used an ultrasteep edge filter with a cutoff of 785 nm. Instead of the long-pass filter in the

All measurements were performed using a low incident laser fluence of 74×10^{-6} J cm$^{-2}$ that results in small temperature exclusions of the sample. Using the transfer matrix method we obtain an absorption of incident photons in the Fe$_{46}$Cu$_6$Pt$_{48}$ layer of 57%. The complex index of refraction of the Fe$_{46}$Cu$_6$Pt$_{48}$ layer was measured via ellipsometry yielding $\overline{n} = 3.6 + i4.3$.

In the weak-perturbation limit, changes in the magneto-optic Kerr signal are proportional to changes in the temperature of the magnetization reservoir: $\Delta \theta(t) \sim \Delta T$. Therefore, in addition to indicating the time evolution of T_e during ultrafast demagnetization, TR-MOKE can be used to measure the temperature evolution during heat diffusion into the substrate after equilibration of electrons, phonons, and magnetization. In this case, the 3TM shown in Eqs. (1) through (3) reduces to the one dimensional heat diffusion equation, which enables us to determine the heat capacity of the Fe$_{46}$Cu$_6$Pt$_{48}$ layer. This approach is equivalent to the time-domain thermoreflectance (TDTR) method, which assumes that the thermoreflectance signal is proportional to temperature changes of the sample [31]. Therefore, we analyze TR-MOKE data measured between 100 ps and 4 ns after laser-excitation analogously to TDTR measurements considering a multilayer heat diffusion model. In contrast to standard TDTR measurements, where the heat capacity of the metal layer is assumed to be known and the thermal properties of the substrate are fit parameters, we take the thermal properties of the SiO$_2$/Si substrate as known and determine the specific heat of the Fe$_{46}$Cu$_6$Pt$_{48}$ layer instead. We note that this 5 nm thin layer is not well suited as a transducer for TDTR, because TDTR requires optically thick transducer layers to prevent temperature-induced changes in the optical properties of the materials underneath that can distort the TDTR signal. TR-MOKE circumvents this problem [32].

The Curie temperature of the sample was determined using static MOKE measurements as a function of temperature yielding $T_C \approx 502$ K (see Supplemental Material [33]). During all measurements, we applied a magnetic field of approximately 350 mT along the easy axis of the sample magnetization. The temperature of the sample is controlled using a heatable stage.

B. Magnetic heat capacity of Fe$_{46}$Cu$_6$Pt$_{48}$

To determine the total specific heat of the Fe$_{46}$Cu$_6$Pt$_{48}$ layer using the approach described above, we analyze the ratio of the in-phase and out-of-phase components of the TR-MOKE signal, $-V_{in}/V_{out}$ (symbols), measured on a 5 nm thin Fe$_{46}$Cu$_6$Pt$_{48}$ layer on a 100 nm SiO$_2$/Si substrate. In the time range shown, the measurement data can be analyzed analogously to time-domain thermoreflectance measurements. Fit curves (solid lines) were obtained using a multilayer heat diffusion model considering the total specific heat of the Fe$_{46}$Cu$_6$Pt$_{48}$ layer as fit parameter.

![FIG. 2. (Color online) Time evolution of the ratio of the in-phase and out-of-phase components of the TR-MOKE signal, $-V_{in}/V_{out}$ (symbols), measured on a 5 nm thin Fe$_{46}$Cu$_6$Pt$_{48}$ layer on a 100 nm SiO$_2$/Si substrate. In the time range shown, the measurement data can be analyzed analogously to time-domain thermoreflectance measurements. Fit curves (solid lines) were obtained using a multilayer heat diffusion model considering the total specific heat of the Fe$_{46}$Cu$_6$Pt$_{48}$ layer as fit parameter.](image)
As an explanation for the small value of C_e, which is one order of magnitude smaller in comparison to Ni, Mendil et al. referred to the reduced density of states at the Fermi energy of FePt. As discussed above, the sensitivity of the 3TM to C_e is small, if the pulse duration is much longer than the electron thermalization time $\tau_{ep} = C_e / g_{ep}$. In our experiment, τ_{ep} is the order of 50 fs, more than one order of magnitude shorter than the pulse duration. Hence accurate knowledge of C_e is not required. In comparison to C_e, setting of C_p is more critical. Due to the large systematic error of C_{tot}, independent determination of C_p, e.g., using the Debye model, would result in a large uncertainty of C_e. However, as illustrated in Fig. 4, variation of the phononic specific heat from the Dulong-Petit value of $3.02 \times 10^{6} \text{Jm}^{-3}\text{K}^{-1}$ up to close to $C_{tot}(300 \text{K})$ reveals that the temperature dependence of the fit parameter g_{es} is weak above approximately 430 K (shaded area in Fig. 4). This behavior is independent of the choice of C_p. Since in this temperature range the magnetic heat capacity changes significantly, we conclude that phenomena (iii) and (iv) are governed by the temperature dependence of magnetic heat capacity. A temperature dependence of g_{es} below 430 K can result artificially, if C_p is chosen such that the “base” value $C_s(300 \text{K})$ is too small (triangles in Fig. 4) or too large (squares in Fig. 4). Therefore, we set $C_p = 3.46 \times 10^{6} \text{Jm}^{-3}\text{K}^{-1}$, such that g_{es} shows no clear trend over the whole temperature range.

C. Ultrafast demagnetization of Fe$_{46}$Cu$_6$Pt$_{48}$

To analyze ultrafast demagnetization behavior of Fe$_{46}$Cu$_6$Pt$_{48}$ measured at different temperatures, we match the 3TM to our experiment; i.e., we consider a laser fluence of $42 \times 10^{-6} \text{Jcm}^{-2}$ with a Gaussian time profile of the convolution of pump and probe pulses (FWHM = 1.2 ps centered around $t = 0$) absorbed in the Fe$_{46}$Cu$_6$Pt$_{48}$ layer assuming an optical penetration depth of 15 nm. To account for heat diffusion into the substrate, we extended the 3TM to a multilayer model. To fit the model to the in-phase component of the measurement signal, we normalize model and measurement data at $t = 200 \text{ps}$. Since the interface thermal conductance between Fe$_{46}$Cu$_6$Pt$_{48}$ layer and the substrate is unknown, we perform the fit in the time range from -2ps to 4ps. In this time range, the model is insensitive to the interface thermal conductance. The influence of this parameter for $t > 4 \text{ps}$ is discussed below. Figure 5 depicts the time evolution of the change in the spin temperature after laser excitation, determined from TR-MOKE measurements (symbols) at different ambient temperatures indicated in the diagram. Phenomena (i) through (iv) described above are clearly visible in the temperature range investigated. To analyze the measurements within the 3TM, we use the specific heat of the Fe$_{46}$Cu$_6$Pt$_{48}$ layer measured, and assume the partitioning into C_p, C_e, and C_s as discussed above. The fast remagnetization observed at 300 K depends on the time evolution of the electron temperature that is governed by the energy transfer coefficient g_{ep} between electrons and phonons. Therefore, the remaining two free parameters, g_{es} and g_{ep}, can be determined from a fit of the 3TM to the measurement at 300 K. For the other measurements at higher temperatures, we only consider one free parameter, g_{es}, and assume that g_{ep} is constant over the temperature range investigated. In this temperature range, for example, g_{ep} of Pt is predicted to decrease only by 20% [28]. The parameter set used for the final 3TM simulations is summarized in Table II, together with the ratio R defined in Eq. (4) indicating that phenomenon...
FIG. 5. (Color online) Demagnetization behavior of the 5 nm thin Fe_{46}Cu_{6}Pt_{48} layer after low-fluence laser excitation at different ambient temperatures as indicated in the diagrams. Figure (a) shows the time evolution from the onset of the laser pulse up to 4 ps, while (b) shows the time evolution plotted logarithmically from 0.1 ps up to 4 ns including cooling by thermal diffusion. Fit curves (solid lines) to the time-resolved magneto-optic Kerr effect measurements (symbols) were obtained using the phenomenological three temperature model [3TM, Eqs. (1) through (3)] considering the specific heat of the Fe_{46}Cu_{6}Pt_{48} layer measured (see caption of Fig. 3). Energy transfer coefficient g_{ep} was fixed from fitting of the 3TM to the data at ambient temperature $T_0 = 300$ K. Fit curves to the data at $T_0 > 300$ K were obtained using one fit parameter, g_{es}, and assuming constant g_{ep} in this temperature range. The parameter set is summarized in Table II.

(iv) occurs at approximately 400 K. The fit curves of the 3TM to the measurements are depicted in Fig. 5 as solid lines. Also depicted is the time evolution of the electron temperature $T_e(300 \text{ K})$ as dashed line. We emphasize that the only significant change in the dynamics predicted by the 3TM is caused by the change of the magnetic heat capacity. This indicates that phenomena (iii) and (iv) described above are dominated by the temperature dependence of the magnetic heat capacity.

TABLE II. Parameter set of the fit curves shown in Fig. 5. [T_0: ambient temperature; C_i: volumetric heat capacity of phonons ($i = p$), electrons ($i = e$), and magnetization ($i = s$); g_{ep} and g_{es}: energy transfer coefficients between electrons and phonons and between electrons and magnetization, respectively; R: ratio defined in Eq. (4) indicating the demagnetization behavior.]

<table>
<thead>
<tr>
<th>T_0 (K)</th>
<th>C_p^a</th>
<th>C_e^b</th>
<th>C_s^c</th>
<th>g_{ep}^d</th>
<th>g_{es}^e</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>3.46</td>
<td>0.033</td>
<td>0.17</td>
<td>7.00</td>
<td>0.63</td>
<td>1.86</td>
</tr>
<tr>
<td>360</td>
<td>3.46</td>
<td>0.040</td>
<td>0.32</td>
<td>7.00</td>
<td>0.92</td>
<td>1.42</td>
</tr>
<tr>
<td>400</td>
<td>3.46</td>
<td>0.044</td>
<td>0.33</td>
<td>7.00</td>
<td>0.60</td>
<td>0.91</td>
</tr>
<tr>
<td>430</td>
<td>3.46</td>
<td>0.047</td>
<td>0.56</td>
<td>7.00</td>
<td>0.61</td>
<td>0.54</td>
</tr>
<tr>
<td>450</td>
<td>3.46</td>
<td>0.050</td>
<td>0.59</td>
<td>7.00</td>
<td>0.48</td>
<td>0.40</td>
</tr>
<tr>
<td>470</td>
<td>3.46</td>
<td>0.052</td>
<td>1.08</td>
<td>7.00</td>
<td>0.59</td>
<td>0.27</td>
</tr>
<tr>
<td>490</td>
<td>3.46</td>
<td>0.054</td>
<td>1.83</td>
<td>7.00</td>
<td>0.75</td>
<td>0.20</td>
</tr>
</tbody>
</table>

aChosen such that the fit parameter g_{es} is approximately constant with respect to the temperature. Note that at high temperatures g_{es} is approximately constant with temperature (see Fig. 4).

bTaken from Ref. [16].

cFixed by the constraint $C_i = C_{tot} - (C_p + C_e)$.

dDetermined from fit to the measurement at $T_0 = 300$ K. Assumed to be constant for measurements at higher temperatures.

eFit parameter.

The fit curves at 300 K and 360 K show small deviations in the time range between ~ 4 ps and ~ 40 ps (see Fig. 5). These deviations disappear if we assume a finite thermal interface conductance between Fe_{46}Cu_{6}Pt_{48} and SiO$_2$ (see Supplemental Material [37]). This indicates that the thermal interface conductance can influence the remagnetization process. Since the interface conductance of metals with amorphous materials has hardly been investigated, further research is motivated.

Deviations of the fit curves at large delay times (> 1 ns) originate from changes in the length of the optical path of the pump beam that changes the radius of the pump beam. This error can be minimized using the ratio of the in-phase and out-of-phase components of the measurement signal [34], as shown in Fig. 2.

IV. DISCUSSION

A. Role of magnetic heat capacity in prior research

In Ref. [38], Dalla Longa et al. derive an analytical solution of the 3TM by neglecting magnetic heat capacity. Although decoupling of Eq. (3) from Eqs. (1) and (2) as done by Dalla Longa et al. is justified if the magnetic heat capacity is negligible compared to the electronic heat capacity, this assumption is not typically justified for the problem of ultrafast demagnetization: The temperature of the magnetization reservoir would closely follow the electron temperature and the “diversity of ultrafast demagnetization” described above could not be observed. We assert, counter to the discussion in Ref. [38], that the analytical solution of the 3TM by Dalla Longa et al. is based on a different assumption: the energy transfer coefficient g_{es} between electrons and magnetization is assumed to be much smaller than the energy transfer coefficient g_{ep} between electrons and phonons.

This misconception about the role of magnetic heat capacity recurred in subsequent research on ultrafast demagnetization...
[6,15,39–41]. For example, in the derivation of the M3TM we read the following: “By neglecting the spin specific heat, the electron and phonon dynamics is not affected by the spin system, (…)” [6]. Counter to this, we assert that the M3TM does consider a magnetic heat capacity within the approximations of the mean-field Weiss model. Based on our work, we conclude that the prediction of a critical slowing down [phenomena (iii) and (iv) described above] by the M3TM is based on the critical behavior of the magnetic heat capacity. The authors of Ref. [6] suggest the ratio of Curie temperature and atomic magnetic moment as figure of merit for the demagnetization time of materials with similar spin-flip parameters, without clarifying the role of magnetic heat capacity. Furthermore, this figure of merit does not consider the dynamics of the phonon temperature that is required for describing phenomena (i) through (iv) as discussed in Sec. II A.

The M3TM has been modified by Roth et al. to account for magnetic heat capacity (in contrast to the prior M3TM that neglected magnetic heat capacity as discussed by Roth et al.) [15]. However, for details on the extended M3TM, the authors refer to a future publication. To explain phenomenon (iv), they state the following: “The reason for such transition is that, close to T_C, loss of ferromagnetic order results in a weaker exchange splitting Δ_{ex}. Since in the M3TM the rate of demagnetization depends on Δ_{ex} (introduced self-consistently in the model as a function of the magnetization itself), performing the experiments close to T_C inevitably leads to a slower demagnetization rate” [15]. However, the connection of this explanation with the role of magnetic heat capacity is not discussed by Roth et al.

The LLBM explains magnetization dynamics at finite temperatures without the need to define a temperature of the magnetization reservoir. Therefore, the role of magnetic heat capacity in the LLBM as well as the connection of the LLBM and the 3TM have remained unexplored. The LLBM explains the “diversity of ultrafast demagnetization” with two parameters: the coupling to the bath parameter and the longitudinal susceptibility [17,18]. The coupling to the bath parameter describes the coupling strength between electrons and magnetization, while the longitudinal susceptibility accounts for spin fluctuations and dominates the temperature dependence of ultrafast demagnetization. The role of longitudinal susceptibility in the LLBM corresponds to the role of magnetic heat capacity in the 3TM that considers energy fluctuations of the magnetization reservoir. Since these energy fluctuations are determined by spin fluctuations, both LLBM and 3TM can, in principle, predict the same demagnetization behavior as a function of temperature. However, the LLBM is not equivalent to the 3TM. For example, since the LLBM avoids defining a temperature of the magnetization reservoir, the longitudinal susceptibility is evaluated at the temperature T_e of the electron reservoir, which is assumed as a heat bath. In contrast to that approach, the magnetic heat capacity in the 3TM is evaluated at the temperature T_e of the magnetization reservoir, which is much lower than T_e during ultrafast demagnetization. Consequently, the two models (3TM and LLBM) cannot predict the same demagnetization behavior, particularly if either T_e or T_s are close to the Curie temperature.

The LLBM has been used, e.g., for analyzing ultrafast demagnetization as a function of temperature in Gd by Sultan et al. [13], and as a function of laser fluence in FePt by Mendil et al. [16]. Sultan et al. state that the observation of phenomenon (iii) in Gd “should provide a key to separate electron- and phonon-mediated spin-flip processes” [13]. Mendil et al. “identify that at large pump fluences the resulting electron temperature remains close to T_C and is leading to critical magnetization fluctuations (…)” [16]. However, the conclusions by Sultan et al. and Mendil et al. are based on the assumption that spin fluctuations are described correctly by the LLBM. This assumption must be considered with caution, since spin fluctuations are considered at the temperature of the electron reservoir, and described within the approximations of a dynamical mean-field approach.

Characteristic time constants from ultrafast demagnetization experiments are typically determined assuming exponential decay functions [12,14,38,42]. Phenomenon (iii) has been explained qualitatively with critical spin fluctuations, e.g., in half-metallic ferromagnets [14,41], and in transition-metal rare-earth alloys [43]. However, the role of magnetic heat capacity has not been considered for analyzing ultrafast demagnetization as a function of material composition, which might have led to incorrect conclusions. For example, Walowski et al. [40] and Radu et al. [44], who studied ultrafast demagnetization of permalloy as a function of dopant concentration, explained changes in the demagnetization time in terms of changes in the coupling strength between electrons and magnetization alone. Eschenlohr et al., who studied ultrafast demagnetization of Gd$_{1-x}$-Tb$_x$ alloys as a function of Tb content, did not consider a possible influence from magnetic heat capacity, although in their experiments for high Tb contents the temperature of the magnetization reservoir increases close to the Curie temperature during demagnetization [45].

B. Role of magnetic heat capacity beyond the weak perturbation limit

Typical experiments on ultrafast demagnetization employ high-fluence lasers with ultrashort pulse durations of approximately 50 fs, which initially generate a highly nonequilibrium state of electrons and finally result in sizable temperature excursions. The 3TM assumes internal thermal equilibrium for each subsystem and does not describe the initial nonequilibrium state during ultrafast demagnetization. It is generally assumed that electrons thermalize with each other within approximately 10 fs, while thermal equilibrium within the magnetization reservoir by excitation and annihilation of spin waves and spin fluctuations is reached within a few picoseconds [1]. Using a model based on the stochastic Landau-Lifshitz-Gilbert equation, Kazantseva et al. found that “for spin temperatures above the Curie temperature the system does not necessarily fully demagnetise during the heat pulse” [46]. They conclude that “the spin system is so far from equilibrium that the concept of a spin temperature has to be questioned on the time scale of picoseconds” [46]. However, in contrast to the Landau-Lifshitz-Bloch model, the model of Kazantseva et al. does not consider longitudinal spin fluctuations in itinerant ferromagnets. Furthermore, as can be
seen in Fig. 1 of Ref. [46], their model does not predict the experimentally observed two-step demagnetization behavior for high laser fluences [15].

In our experiments we used a low-fluence laser with pulse durations of the order of 1 ps. This enabled us to apply the 3TM and to test our criterion for the demagnetization behavior [Eq. (4)]. However, it is an open question if this criterion and our conclusions on the role of magnetic heat capacity can be generalized for high laser-fluence experiments. We believe that such a generalization is indeed possible, since the initial nonequilibrium state of the magnetization persists only over a short time scale of the order of 1 ps, while the demagnetization process can extend up to several 100 ps for temperatures where magnetic heat capacity significantly determines the magnetization dynamics. Moreover, the demagnetization behavior observed as a function of laser fluence is consistent with predictions from the 3TM; i.e., consideration of the initial nonequilibrium state is not required for explaining the slowing down with increasing laser fluence.

V. CONCLUSION

In summary, we revisited the basic three temperature model (3TM) of ultrafast demagnetization and provided a general criterion for explaining the different time scales observed. We clarified the role of magnetic heat capacity in the microscopic three temperature model and compared the 3TM with the Landau-Lifshitz-Bloch model. Furthermore, we presented time-resolved magneto-optic Kerr effect measurements of ultrafast demagnetization and specific heat of Fe$_{46}$Cu$_{6}$Pt$_{48}$ from 300 K to close to its Curie temperature. In contrast to most of the prior research, our experiments involved small temperature excursions. Our experimental results corroborate that the slowing down of ultrafast demagnetization near the Curie temperature is dominated by the increase in the magnetic heat capacity.

ACKNOWLEDGMENTS

We thank Gyung-Min Choi and Jun Liu for discussions. This work was carried out in part in the Frederick Seitz Materials Research Laboratory Central Research Facilities, University of Illinois. Financial supports by the Army Research Office under Contract No. W911NF-14-1-0016 and by the German Research Foundation under DFG-Grant No. KI 1893/1-1 and DFG-Grant No. AL 618/21-1 are kindly acknowledged.

[33] See Fig. S1 of the Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevB.90.224408 for the static magneto-optic Kerr rotation on reflection from the surface of the sample as function of temperature.
[37] See Fig. S2 of the Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevB.90.224408 for the influence of a finite interface thermal conductance on the demagnetization behavior.