Comparison of the 3ω method and time-domain thermoreflectance

David G. Cahill, Shawn Putnam, Yee Kan Koh

Materials Research Lab and Department of Materials Science and Engineering, U. of Illinois, Urbana, IL, USA

And many thanks for contributions from the groups of

Arun Majumdar, Art Gossard, Ali Shakouri, Linda Schadler

Supported by ONR, ARPA-E, AFOSR
• Introduction to time-domain thermoreflectance (TDTR)

• Pros and cons: 3ω versus TDTR

• Digression: what limits 3ω accuracy and precision?

• TDTR advantages for high thermal conductivity thin layers, spatial resolution, and semiconductors.

• Additional issues: Frequency dependent thermal conductivity of semiconductor alloys.
Time-domain thermoreflectance
Time-domain thermoreflectance

Clone built at Fraunhofer Institute for Physical Measurement, Jan. 7-8 2008
- Optical constants and reflectivity depend on strain and temperature
- Strain echoes give acoustic properties or film thickness
- Thermoreflectance gives thermal properties
- Heat supplied by modulated pump beam (fundamental Fourier component at frequency \(f \))

- Evolution of surface temperature

\[\text{time} \]
• Instantaneous temperatures measured by time-delayed probe

• Probe signal as measured by rf lock-in amplifier
Analytical solution to 3D heat flow in an infinite half-space, Cahill, RSI (2004)

- **spherical thermal wave**
 \[g(r) = \frac{\exp(-qr)}{2\pi r} \quad q^2 = (i\omega/D) \]

- **Hankel transform of surface temperature**
 \[G(k) = \frac{1}{4\pi^2 k^2 + q^2} \]

- **Multiply by transform of Gaussian heat source and take inverse transform**
 \[P(k) = A \exp(-\pi^2 k^2 w_0^2/2) \]
 \[\theta(r) = 2\pi \int_0^\infty P(k)G(k)J_0(2\pi kr) k \, dk \]

- **Gaussian-weighted surface temperature**
 \[\Delta T = 2\pi A \int_0^\infty G(k) \exp\left(-\pi^2 k^2 \left(w_0^2 + w_1^2\right)/2\right) k \, dk \]
Iterative solution for layered geometries

\[
\begin{pmatrix}
B^+ \\
B^-
\end{pmatrix}_n = \frac{1}{2\gamma_n} \begin{pmatrix}
\exp(-u_n L_n) & 0 \\
0 & \exp(u_n L_n)
\end{pmatrix} \\
\times \begin{pmatrix}
\gamma_n + \gamma_{n+1} & \gamma_n - \gamma_{n+1} \\
\gamma_n - \gamma_{n+1} & \gamma_n + \gamma_{n+1}
\end{pmatrix}
\begin{pmatrix}
B^+ \\
B^-
\end{pmatrix}_{n+1}
\]

\[
u_n = \left(4\pi^2 k^2 + q_n^2\right)^{1/2} \quad q_n^2 = \frac{i\omega}{D_n} \quad \gamma_n = \Lambda_n u_n
\]

\[
G(k) = \left(\frac{B_1^+ + B_1^-}{B_1^- - B_1^+}\right) \frac{1}{\gamma_1}
\]
Frequency domain solution for 3ω and TDTR are essentially the same

3ω
- “rectangular” heat source and temperature averaging.
- One-dimensional Fourier transform.
- “known” quantities in the analysis are Joule heating and dR/dT calibration.

TDTR
- Gaussian heat source and temperature averaging.
- Radial symmetric Hankel transform.
- “known” quantity in the analysis is the heat capacity per unit area of the metal film transducer.
TDTR signal analysis for the lock-in signal as a function of delay time t

- In-phase and out-of-phase signals by series of sum and difference over sidebands

\[
\text{Re} [\Delta R_M(t)] = \frac{dR}{dT} \sum_{m=-M}^{M} \left(\Delta I (m/\tau + f) + \Delta I (m/\tau - f) \right) \exp(i2\pi mt/\tau)
\]

\[
\text{Im} [\Delta R_M(t)] = -i \frac{dR}{dT} \sum_{m=-M}^{M} \left(\Delta I (m/\tau + f) - \Delta I (m/\tau - f) \right) \exp(i2\pi mt/\tau)
\]

- out-of-phase signal is dominated by the $m=0$ term
 (frequency response at modulation frequency f)
Windows software

author: Catalin Chiritescu,
users.mrl.uiuc.edu/cahill/tcdata/tdtr_m.zip
Time-domain Thermoreflectance (TDTR) data for TiN/SiO$_2$/Si

- Reflectivity of a metal depends on temperature.
- One free parameter: the “effective” thermal conductivity of the thermally grown SiO$_2$ layer (interfaces not modeled separately).

Costescu et al., PRB (2003)
TDTR: early validation experiments

Each have advantages and disadvantages

3\(\omega\)

- High accuracy, particularly for bulk materials and low thermal conductivity dielectric films
- Accuracy is reduced for semiconducting thin films and high thermal conductivity layers
 - Need electrical insulation: introduces an additional thermal resistance.
 - Cannot separate the metal/film interface thermal conductance from the thermal conductivity
- Wide temperature range (30 < \(T< 1000\) K)
 - But very high temperatures are not usually accessible for semiconductors
Each have advantages and disadvantages

TDTR

- Accuracy is typically limited to several percent due to uncertainties in the many experimental parameters
 - Metal film thickness
 - Heat capacity of the sample if film is thick
- But many experimental advantages
 - No need for electrical insulation
 - Can separate the metal/film interface thermal conductance from the thermal conductivity
 - High spatial resolution
 - Only need optical access: high pressures, high magnetic fields, high temperatures
Digression: what limits the accuracy of 3ω data?

- 1990’s: approximations made for low thermal conductivity film on high thermal conductivity substrate and film thickness < heater-width
 - No need for those approximations now. Feldman and co-workers (1999), and others shortly after, pointed out that a transfer matrix approach for layered geometries is equally applicable for linear and radial heat flow.
 - DOS program: multi3w.exe available at users.mrl.uiuc.edu/cahill/tcdata.html
 - Anisotropy is easy to add
Digression: what limits the accuracy of 3ω data?

- Contributions from the heater line.
 - Not explicitly included in the heat flux boundary conditions of the solutions.
 - Heat capacity matters at very high frequencies, see, for example, Tong et al. RSI (2006).
 - Lateral heat flow in heater line was considered recently by Gurrum et al., JAP (2008).
Digression: what limits the accuracy of 3ω data?

- In my experience, the dR/dT calibration is the biggest issue.
 - use physics to fix the calibration

$$R(T) = \frac{l}{A} \rho_{BG}(T) + R_o,$$

Bloch-Grüneisen resistivity of a metal

$$\rho_{BG}(T) = C_{BG} \left(\frac{T}{\theta_D} \right)^{5} \int_{0}^{\theta_D/T} \frac{z^5}{(\exp(z) - 1)(1 - \exp(-z))} dz,$$
Calibration of Au thermometer line

- Materials with large coefficient of thermal expansion create an interesting problem
 - during calibration of $R(T)$ substrate strain is homogeneous
 - but during 3ω measurement, ac strain field is complex so the determination of dR/dT is not really correct.
High thermal expansion coefficients

- Add terms to account for effect of strain on the Bloch-Grüneise resistivity and the residual resistivity.

\[
R(T) = \frac{l}{A} \rho_{BG}(T) \left[1 + c_3 \ 5.75 \ (\alpha(T) - \alpha(T_o)) \right] \\
+ R_o \left[1 + c_3 \ 2.45 \ (\alpha(T) - \alpha(T_o)) \right],
\]

- CTE of PMMA is \(\approx 50 \text{ ppm/K}\)
- CTE of PbTe is \(\approx 20 \text{ ppm/K}\)
Highest precision measurements at Illinois using 3ω: polymer nanocomposites

- PMMA mixed with 60 nm γ-Al$_2$O$_3$ nanoparticles

Putnam et al., JAP (2003)
Something not possible with 3ω: TDTR data for isotopically pure Si epitaxial layer on Si

- Two free fitting parameters
 - thermal conductivity, 165 W/m-K
 - Al/Si interface conductance, 185 MW/m2-K

Cahill et al., PRB (2004)
Thermal conductivity map of a human tooth

Tooth Anatomy

- Enamel
- Dentin
- Pulp
- Canals (containing periodontal membrane)
- Nerves and blood vessels
- Root and opening
- Enamel
- Dentin

www.enchantedlearning.com/
High throughput data using diffusion couples

![Graph showing thermal conductivity vs. Al concentration](image)

- **Present experiment**
- **Terada et. al.**

SEM image showing Ni and Ni-54.5at%Al with a scale bar of 200 μm.
Thermoreflectance raw data at t=100 ps

- fix delay time and vary modulation frequency f.
- Change in V_{in} doesn’t depend on f. V_{out} mostly depends on $(f\Lambda C)^{-1/2}$
- semiconductor alloys show deviation from fit using a single value of the thermal conductivity

Koh and Cahill PRB (2007)
Same data but fit Λ at each frequency f

Frequency dependent thermal conductivity of semiconductor alloys

Koh and Cahill PRB (2007)
How can thermal conductivity be frequency dependent at only a few MHz?

- $2\pi f\tau \ll 1$ for phonons that carry significant heat. For dominant phonons, $\tau \sim 50$ ps, and $2\pi f\tau \sim 10^{-3}$.

- But the thermal penetration depth d is not small compared to the dominant mean-free-path l_{dom}.

- Ansatz: phonons with $l(\omega) > d$ do not contribute to the heat transport in this experiment.

- True only if the “single-relaxation-time approximate” fails strongly. For single relaxation time τ, $l \ll d$ because $f\tau \ll 1$.
For non-equilibrium, add effusivity instead of conductivity

- Consider a "two-fluid" model with
 \[\Lambda_1 \approx \Lambda_2 \]
 \[C_1 \gg C_2 \]

- Equilibrium,
 \[
 (\Lambda C)^{1/2} = \left[(\Lambda_1 + \Lambda_2)(C_1 + C_2) \right]^{1/2}
 \]

- Out-of-equilibrium,
 \[
 (\Lambda C)^{1/2} = (\Lambda_1 C_1)^{1/2} + (\Lambda_2 C_2)^{1/2}
 \approx (\Lambda_1 C_1)^{1/2}
 \]
$f < 1$ MHz frequency TDTR agrees with 3ω

2 μm thick $(\text{In}_{0.52}\text{Al}_{0.48})_x(\text{In}_{0.53}\text{Ga}_{0.47})_{1-x}\text{As}$

Koh et al., JAP (2009)
Summary and Conclusions

• Usually, 3ω has higher accuracy because Joule heating and dR/dT calibration are electrical measurements and geometry is precisely known.

• For semiconducting thin films, because of extra thermal resistance of electrical isolation layers, accuracy of TDTR is comparable.

• TDTR has tremendous advantages in experimental convenience—once the high initial cost and set-up has been overcome.