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Boron doping concentrations 6x 10'° cm™2 were found to increase ®01) growth ratesRg; at

low temperatures while decreasifRy; at higher temperatures during gas-source molecular beam
epitaxy(GS-MBE) from Si,Hg and BHg. In order to probe the mechanisms governing these effects,
Si(001) samples withB coverage®g ranging from<0.05 to=0.5 ML were prepared by exposing

clean S{001)2x1 wafers to BHg doses between:210 and 4x 10°° cm™~? at 200—400 °C. The
samples were then heated to 700 °C to desorb the hydrogen, cooled to 200 °C, and exposed to
atomic deuterium until saturation covera@e. temperature programmed desorption spectra exhibit

B, andB; peaks due to dideuteride and monodeuteride desorption at 405 and 515 °C as well as new
B-induced peaksB3 and 87 , at 330 and 470 °C. Increasirt increases the area undéf and

B3 atthe expense @8, andB;. Moreover, the totaD coverage continuously decreases freh.23

ML in the absence oB to =0.74 ML at 65=0.5 ML. We propose that the observBenduced
decrease in the SiD bond strength, where Srepresents surface Si atoms bonded to second-layer

B atoms, is due to charge transfer and increas&di®ner strain. The Sito B charge transfer also
deactivates Si surface dangling bonds causing the decre@ge ifhese results are used to explain

the GS-MBE growth kinetics. @996 American Institute of Physids$S0003-695(196)00951-3

The incorporation probability oB from B,Hg in GS-  with reflection high energy electron diffractiofRHEED)
MBE Si(001) has been shown to increase linearly with in-and a quadrupole mass spectrom&t®MS), is connected
creasing BHg/Si,Hg flux ratios and to decrease exponen-through a transfer chamber to an analytical station containing
tially with inverse film growth temperatufe.B is  provisions for AES and LEED. TPD measurements were
incorporated into substitutional electrically active sites atperformed in a separate chamber attached to the analytical
concentrationEg up to the highest values investigated in station and containing a heavily differentially pumped Extrel
Ref. 1, 2.5¢10'° cm™3, with no measurable effect on film QMS.
growth rateRg;. However, even higheéB concentrations are The Si001) substrates used in these experiments were
of interest for the emitter regions of heterojunction bipolar1x 3 cn? plates cleaved from 0.5-mm-thick-type (n
transistors in order to reduce the reverse injection cufrent.=1—2x 10 cm %) wafers. The substrate cleaning proce-
Recently, we have found that the use ofHB/Si,Hg flux  dure described in Ref. 1 yielded starting surfaces wiki2
ratios corresponding t€z=6x 10" cm™2 leads toB sur-  RHEED patterns and sharp Kikuchi lines. No residual C or O
face segregation and an increaseRix) by up to 50% in the was detected by AES. The clean substrates were then ex-
low-temperature surface reaction limited regime while deposed to controlled fluxes of Bls delivered through a tubu-
creasingRg; by a corresponding amount in the higher tem-|ar doser located 3 cm from the substrate at an angle of 45°.
perature flux-limited regim@. Hydrogen desorption, sample annealing, and deuterium ex-

In this letter, we present the initial results of experimentsposures were carried out in the analytical chamBerwas
designed to provide insight into the mechanism by whichdelivered through a doser identical to that described above
extremely highB doping concentrations affect GS-MBE and a hot filament in the gas stream was used to crack the
Si(001) growth rates in opposite directions at high and lowgas. For TPD experiments, the sample was placed 2 mm
growth temperatures. Specifically, temperature programmeglom the 5-mm-diam hole in the skimmer cone between the
desorption(TPD), low energy electron diffractiofLEED),  mass spectrometer and analytical chambers. Samples were
and Auger electron spectroscopyES) were used to inves- heated at a linear rate, typically £°s~1, by direct current
tigate the effects of increasirigcoverage on Si surface dan- hijle the temperature was determined by a thermocouple
gling bond coverages and Si—H bond strengths. In order t@gjiprated using an optical pyrometer.
suppress the background signal during TPD measurements B,Hs exposures, typically at a flux of 2.2
on clean and-doped Si surfaces, deuterium rather than hy-x 1016 cm~2s~1 were carried out at temperatures between
drogen was used to probe dangling bond coverages. 200 and 400 °C for times ranging from 5 to 30 min. The

The experiments were carried out in a four-chamberg;sj001) samples were then heated to 700 °C for 5 min to
ultrahigh-vacuum  systeht with a base pressure 0£5  gesorh the hydrogen. LEED patterns in all cases weté.2
x10"* Torr. The film growth chamber, which is equipped powever, the amount of diffuse scattering increased with
increasing BHg exposure temperatures and times. This is
dElectronic mail: jegreene@uiuc.edu consistent with previous scanning tunneling microscopy
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Temperature (°C) FIG. 2. Fitted D, TPD spectra from deuterium-saturated08il) with
preadsorbed® coveragesa) §g=0.35 ML and(b) #g=0.50 ML. The in-
FIG. 1. D, TPD spectra from deuterium-saturatég) Si(001) and (b) tensity scales are the same as in Fig).1
Si(001) with preadsorbed® coveraged)s . The same intensity scale is used
in (@) and(b).
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(STM) results by Wanget al® showing that B on $001) 4
moves to second-layer positions and induces local orderinﬂ)r first-order desorption and
with c4X4 symmetry. The ordered domains are, however,

In( 9D(T))
0o

much smaller than the LEED electron-beam coherence 6o
length so diffraction patterns remairx2. B coverage9g Oo(T)= i ©)
were estimated based upon AES measurements of B KLL 1+ 7 0ol (T)

(178 eV) and Si LMM (92 eV) peak intensity ratios. Sensi-
tivity factors and electron escape lengths were taken fronfor second-order desorptio, in Egs. (2) and (3) is the
Ref. 6 and calibration was provided using d13i)v3Xv3 initial coverage and(T) is given by
test sample which was known to have 0.33 MLBin the
third layer! g in the B/S{001) samples ranged from less
than the AES detection limi=0.05 to 0.5 ML, increasing
with exposure temperature in agreement wigHB reactive
sticking probability results in Ref. 1. in which e=E,/kT. The fitted results in Fig. (&) were ob-
Typical D, TPD results from a Si(001)21 wafer ex-  tained withE, and v equal to 1.88 eV and 10 s~ for
posed to saturation deuterium coverage, but with nbleB g, and 2.52 eV and ¥ 10'® s~ for B, in reasonable agree-
exposure, are shown in Fig(a. The spectrum consists of ment with Refs. 8 and 12. The relatively poor fit at the high-
two peaks, labelegs, and B, due to desorption from the est temperatures is also observed fof081):H TPD™ and
1X1 dideuteride phase and the<2 monodeuteride phase, due, as noted above, to the fact it desorption deviates
respectively. The peaks are centered at 405 and 515 °Grom first-order kinetics at lowD (or H) coverages.
While B, desorption is second ordes; follows first order Typical D, spectra fromB-doped Sj001) surfaces are
kinetics, except at very low deuterium coveragés  shown in Fig. 1b). Compared to the pure Si TPD spectra in
<0.1 ML? due to 7-bonding-induced pairing of dangling Fig. 1(a) the adsorption oB has clearly reduced the onset
bonds on single dimerSThe data can be fit using a standard temperature fob, desorption while the features have broad-
Polanyi-Wigner analysis in which the desorption rateened indicating the presence of new peaks. In addition, the
dfp/dT is expressed 43 total saturated, coverage decreases with increasihgon-
centration from 1.23 ML with nd exposure to 0.84, 0.82,
d0p _ _) expl— E,/KT), & anq 0.74 ML_With_aB=O.35, 0.40_, and 0.50, respectively.
dT 14 This stems primarily from the rapid decrease8{(6g).
All D, TPD spectra fronB preadsorbed samples were
wherev is the attempt frequency is the instantaneou®  found to be well fit with four peaks: the initigh, and 3,
coveragen is the order of the desorption reactianjs the  peaks together with the two lower-temperatBenduced
sample heating raté, is the desorption activation energy, 85 and B peaks at 330 and 470 °C. Examples of fitted
andk is Boltzmann’s constant. At high pumping speétis, spectra are shown in Figs(&2 and 2b) for samples with
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0g=0.35 and 0.50 ML. Best fit values f&, and v are 1.56 Ssi,n, are the incident $Hg flux and reactive sticking prob-

eV and 1x10'* s™* for g3 and 2.29 eV and 810 s™* ability, 64, is the dangling bond coverage, and N is the bulk
for g . . Si atom density” At low film growth temperaturesRg; is

_ Previous STM result3, _have ShOW thatB-lnduc_ed very strongly dependent upafy, which is a complex func-
Si(001) surface reconstructions consist of two primarytion of SSiZHG’ ‘JSizHe’ T, and the hydrogen desorption rate.

c4x4 S(;“:\::Vturf".il flljbumtgc(;)_ntalmngéogr slfk():ong-lalﬁait- Our TPD results clearly show that high subsurf&eover-
oms an 0 first-layer St dimers wild backbonds. in one ages result in a weakening of*SiH bonds, thus increasing

subunit, there is also a dimer vacancy while in the other ther'ﬁwe hydrogen desorption rate which, in turn, increaggsin
is an additional Si dimer which is unmodified and bcmded’[he surface reaction limited regime and, hence, increases

only to second-layer Si atoms. ‘Thus, t.BQ and g, peaks Rsi. At high film growth temperatures in the absenceBof
should be qbsgrved even f6g=0..5 ML, n agreeme'nt.wnh O4p approaches unitySg; _ is essentially independent of
the results in Figs. (b) and 2b), since undisturbed Si dimers 17 276, o .
still exist. Ts, andRsi<Jsjn, .~ Thus, in the impingement flux limited
The Si-B bond length, 2.0-2.1 &, is considerably regime, the primary effect of higB coverages is to deactive
shorter than Si—Si, 2.35 A, arl has both a higher elec- @ fraction of the Si dangling bonds leading to a decrease in
tronegativity than Si and an empsp® orbital. Thus, we b @nd the observed decreaseRg; at constants;, . We
propose that the decrease observeddjnwith increasing have performed TPD measurements on very highly doped
fg is, in addition to the increased concentration of Si dimerGS-MBE Si:B films. The spectra are similar to those shown
vacancies, due to the partial deactivation of Si danglingn Figs. 1b) and 2 and can thus be used to estintagirface
bonds resulting from charge transfer from Si adatoms to subsoverages.
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