Nanoscale thermal transport and the thermal conductance of interfaces

David G. Cahill
Scott Huxtable, Zhenbin Ge, Paul Bruan
Materials Research Laboratory and Department of Materials Science
Zhaohui Wang, Dana Dlott
Department of Chemistry
University of Illinois, Urbana
Outline—the big picture

Condensed matter physics
Surface and interface science
Physical chemistry

Nanoscale thermal transport

Heat transfer engineering
Thermal management
Laser processing
Device modeling
Outline

• Interface thermal conductance
• Pump probe apparatus
• Transient absorption
 – Carbon nanotubes and thermal transport at hard-soft interfaces
 – Metal nanoparticles and interfaces with water
• Time-domain thermoreflectance
 – hydrophilic and hydrophobic interfaces
• Sum-frequency vibrational spectroscopy as a probe of thermal transport across molecular layers
Interfaces are critical at the nanoscale

- Disordered layered crystals of WSe$_2$.
 - lowest thermal conductivity ever observed in a dense solid, only twice the conductivity of air

- Carbon nanotube composite solids and liquids for thermal management

- Localization of thermal effects: medical therapy/biotechnology
Thermal transport properties

- Thermal conductivity Λ is a property of the continuum

$$\mathbf{j} = -\Lambda \nabla T$$

$$\Lambda = \frac{1}{3V k_B T^2} \int_0^\infty \langle \mathbf{j}(t) \cdot \mathbf{j}(0) \rangle \, dt$$

- Thermal conductance (per unit area) G is a property of an interface

$$\mathbf{J} = G \Delta T$$

$$G = \frac{1}{Ak_B T^2} \int_0^\infty \langle q(t)q(0) \rangle \, dt$$
Factor of 60 range at room temperature
Time domain thermoreflectance since 2003

- Improved optical design
- Normalization by out-of-phase signal eliminates artifacts, increases dynamic range and improves sensitivity
- Exact analytical model for Gaussian beams and arbitrary layered geometries
- One-laser/two-color approach tolerates diffuse scattering

Clone built at Fraunhofer Institute for Physical Measurement, Jan. 7-8 2008
Er-fiber laser system, UIUC Nov. 2007
Solid-liquid interfaces: Two approaches

• Transient optical absorption of nanoparticles and nanotubes in liquid suspensions.
 – Measure the thermal relaxation time of a suddenly heat particle. Interface sensitive if the particle is small enough.
 – limited to interfaces that give good stability of the suspension, e.g., hydrophilic particles in H₂O

• Time-domain thermoreflectance of thin planar Al and Au films.
 – heat flows both directions: into the fluid and into the solid substrate.
Carbon nanotubes

- Evidence for the highest thermal conductivity any material (higher conductivity than diamond)

Yu et al. (2005)

Maruyama (2007)
Can we make use of this? Fischer (2007)

- Much work world-wide:
 - thermal interface materials
 - so-called "nanofluids" (suspensions in liquids)
 - polymer composites and coatings

Lehman (2005)
Nanotubes in surfactant in water: Transient absorption

- Optical absorption depends on temperature of the nanotube
- Assume heat capacity is comparable to graphite
- Cooling rate (RC time constant) gives interface conductance

\[G = 12 \text{ MW m}^{-2} \text{ K}^{-1} \]
• Carbon nanotubes have a small number of low frequency modes associated with bending and squeezing. Only these modes can couple strongly with the liquid.
Application: Critical aspect ratio for a fiber composite

- Isotropic fiber composite with high conductivity fibers (and infinite interface conductance)

\[\Lambda_c = \frac{1}{3} V_f \Lambda_{NT} \]

- But this conductivity is obtained only if the aspect ratio of the fiber is high

\[3 \left(\frac{\Lambda_{NT}}{rG} \right)^{1/2} \approx 2000 \]

- Troubling question: Did we measure the relevant value of the conductance?

"heat capacity G" vs. "heat conduction G"
Hydrophilic metal nanoparticles: 4 nm diameter Au:Pd nanoparticles in water

transient absorption data

\[G = 2.0 \times 10^8 \quad G = \infty \]

\[G = 1.8 \times 10^8 \quad G = \infty \]
Nanoparticle summary

In water

\[G \approx 200 \text{ MW m}^{-2} \text{ K}^{-1} \]

\[\Lambda/G \approx 3 \text{ nm} \]

Hydrophilic interfaces are surprisingly similar despite differences in molecular structure of the surfactants

In Toluene

\[G \approx 15 \text{ MW m}^{-2} \text{ K}^{-1} \]
Time-domain Thermoreflectance (TDTR) data for TiN/SiO$_2$/Si

- reflectivity of a metal depends on temperature
- one free parameter: the “effective” thermal conductivity of the thermally grown SiO$_2$ layer
TDTR: Flexible, convenient, and accurate

...with 3 micron spatial resolution
Thermal conductivity map of a human tooth

Distance from the DEJ (μm)

ΛC/C0 (W m⁻¹ K⁻¹)

0.0 0.5 1.0 1.5 2.0

dentin enamel

Distance from the DEJ (μm)

www.enchantedlearning.com/
Thermoreflectance of aqueous interfaces

<table>
<thead>
<tr>
<th>Water</th>
<th>SAM</th>
<th>Au</th>
<th>10nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ti</td>
<td>2nm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al</td>
<td>20nm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ti</td>
<td>5nm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>polyimide~30nm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sapphire substrate 1mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SiO₂</td>
<td>130nm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Hydrophobic**
 - Au-SC₁₈
 - 50 MW/m²-K

- **No Water**
 - Au-C₁₁OH

- **Hydrophilic**
 - 100 MW/m²-K
• Experiments contain many interfaces and layers so look at the difference in the conductance created by changing from hydrophobic to hydrophilic.

• Define Kapitza length, equivalent thickness of water: \(h = \frac{\Lambda}{G} \)
 - Au/hydrophobic \(h = 12 \) nm
 - Au/hydrophilic \(h = 6 \) nm

• Difference between CH\(_3\) and OH terminal group
 - Au \(\Delta h = 6 \) nm
 - Al \(\Delta h = 7 \) nm
MD Simulation of model interfaces

Keblinski et al., RPI

water-octane

\[G = 65 \text{ MW/m}^2\cdot\text{K} \]
Simulated vibrational spectra

<table>
<thead>
<tr>
<th>Interface</th>
<th>G (MW/m²-K)</th>
<th>$\Lambda - H_2O/G$ (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Octane</td>
<td>65</td>
<td>9</td>
</tr>
<tr>
<td>Water Benzene</td>
<td>175</td>
<td>3.4</td>
</tr>
<tr>
<td>Water Surfactant</td>
<td>300</td>
<td>2</td>
</tr>
<tr>
<td>Surfactant Hexane</td>
<td>370</td>
<td>1.6</td>
</tr>
<tr>
<td>Surfactant Benzene</td>
<td>190</td>
<td>3</td>
</tr>
</tbody>
</table>

difference between water/octane and water/surfactant

$\Delta h = 7$ nm
Heat transport and ultrafast disordering of an organic molecule (with Dana Dlott)
Classic “flash diffusivity” measurement

Broad-band sum-frequency generation (SFG) vibrational spectroscopy

- tunable (2.5-18 μm) broad-band IR pulse
- fixed (800 nm) narrow band
- sum-frequency signal analyzed by spectrograph

50 nm Au on glass substrate

sum-frequency

visible pulse

IR pulse
Complicated thermometer

- MD simulation of suddenly heated alkane molecules: greatest sensitivity near 500 K.
- Disordering occurs in 1 ps for large (>300 K) temperature excursion
Time-resolved sum-frequency spectroscopy
Interface limited heat transport

- Both onset and time-constant of dis Ordering are approximately linear in chain length
- Suggests heat transport is controlled by the interface (not diffusive in the molecule)
- Estimate of molecule heat capacity gives thermal conductance of \(\approx 50 \) pW/K
• Thermal conductance of Pb/diamond is much higher than radiation limit. Need a quantitative theory for the anharmonic channel for heat transport.

• Low conductance of hard/soft interfaces limits the applications of carbon nanotubes for thermal management. How can we measure the relevant conductance for the heat carrying phonons?

• The difference in Kapitza lengths for hydrophobic and hydrophilic interfaces is large at the molecular scale ($\Delta h=6$ nm) but rules out significant “drying” of hydrophobic interfaces.

• Demonstrated sum-frequency generation as the world’s thinnest thermometer. Can we find a thin and fast thermometer that is easier to calibrate?