Electrochemical control of thermal conductivity in thin films

David G. Cahill, Jiung Cho, and Paul V. Braun

Department of Materials Science and Engineering, Materials Research Laboratory, University of Illinois at Urbana-Champaign

International Institute for Carbon Neutral Energy Research, Kyushu U., Fukuoka, Japan

Supported by AFOSR
• Thermal conductivity and measurement by time-domain thermoreflectance (TDTR)

• Big picture goals of our work:
 – Understand and push the limits of thermal conductivity in various classes of materials
 – **enhance thermal function in materials**, e.g., abrupt changes in conductivity, actively controlled conduction, more efficient heat pumping.

• Electrochemical modulation of the thermal conductivity of Li_xCoO_2
 – Materials science and phenomenology
 – Materials physics
Thermal conductivities of dense solids span a range of 40,000 at room temperature.

Adapted from Goodson, *Science* (2007)
Time-domain thermoreflectance

Nd: YVO → Ti: Sapphire

Long-pass optical filter

Variable Delay

Electro-Optic Modulator

10X Objective

Sample Illuminator

Pump

Sample

Polarizing Beam Splitter

Short-pass optical filter

Optical Isolator

CCD Camera

Color Filter

Probe

Photodiode Detector

Spectrum Analyzer
Time-domain thermoreflectance

Clone built at Fraunhofer Institute for Physical Measurement, Jan. 7-8 2008
psec acoustics and
time-domain thermoreflectance

- Optical constants and reflectivity depend on strain and temperature
- Strain echoes give acoustic properties or film thickness
- Thermoreflectance dR/dT gives thermal properties
Time-domain Thermoreflectance (TDTR) data for TiN/SiO$_2$/Si

- Reflectivity of a metal depends on temperature.
- One free parameter: the "effective" thermal conductivity of the thermally grown SiO$_2$ layer (interfaces not modeled separately).

Costescu et al., PRB (2003)
Costescu et al., PRB (2003)
TDTR: Flexible, convenient, and accurate

PbTe/PbSe superlattices

\[\Delta \propto (W \text{ m}^{-1} \text{ K}^{-1}) \]

Transfer-printed interfaces

Radiation damage

\[\Delta (W \text{ m}^{-1} \text{ K}^{-1}) \]

High resolution mapping
TDTR is an all-optical method adaptable to “extreme” environments such as high pressure.

Thermal conductivity of PMMA is independent of thickness and agrees well with the predicted scaling with $(C_{11})^{1/2}$.
High throughput measurements of polymer fibers by time-domain thermoreflectance

(b) [Images of fiber samples]

(c) [Graph showing thermal conductivity and tensile modulus]

- $-V_{in}/V_{out}$ vs. time delay (ps)
- Thermal conductivity (W m$^{-1}$K$^{-1}$) vs. tensile modulus (GPa)

Wang et al., Macromolecules (2013)
Electrochemical modulation of thermal conductivity of Li$_x$CoO$_2$

- Polycrystalline thin film prepared by sputter deposition and annealing
- Real-time measurement by TDTR and picosecond acoustics.
 - Thermal conductivity $3.6 \rightarrow 5.4$ W m$^{-1}$ K$^{-1}$
 - Elastic modulus $220 \rightarrow 300$ GPa
 - Ex-situ thermal conductivity contrast as large as a factor of 2.7

Sputter deposit \(\text{Li}_x\text{CoO}_2 \) and anneal in air

- TDTR works best with Al transducer.
 - Limit annealing temperature of samples for in-situ studies to 500°C

500 nm \(\text{Li}_x\text{CoO}_2 \); 0.3C rate
Characterize microstructure by electron microscopy

- After annealing at 500°C in air
- Nanocrystalline, dense microstructure
Characterize microstructure by electron diffraction

- No strong texture; would eventually like to study textured films
In-situ measurements of thermal conductivity and elastic constants

- Full delay time scans of Li_{0.5}CoO_2 and LiCoO_2
Continuous real-time measurements during electrochemical cycling

- With delay time set to a fixed value, ratio can be measured continuously and converted to thermal conductivity.

- Position of acoustic echo requires a scan over a limited range of delay times. Peak volume change is only 1.3% so changes in thickness are negligible.
Continuous real-time measurements during electrochemical cycling

- Convert time-axis to composition. (We assume irreversible capacity loss occurs only during the lithiation cycle.)
- Thermal conductivity is not a linear function of x; plateau for $0.5 < x < 0.8$
- Longitudinal elastic modulus is a linear function of x.
Ex-situ measurements of film annealed at 700°C shows higher conductivity in fully lithiated state.

- Not yet sure of the mechanism.
 - Different texture?
 - Larger grain size?
 - Fewer point defects?
Do Li vacancies scatter phonons?

- Classic example of point defect scattering is mass disorder created by isoelectronic substitution, e.g., SiGe alloy

Change in thermal resistivity (Reciprocal of thermal conductivity)

- Unlikely that random Li vacancies alone can explain the dependence of thermal conductivity on x.

![Graph showing the change in thermal resistivity as a function of Ge content in dilute SiGe alloys.](image)
Mixture of Li rich and Li poor nanoscale phases?

- Evidence in the literature (Reimer et al., JES (1992)) for a two-phase region $0.75 < x < 0.93$.

- This possibility makes the situation exceedingly complicated to predict the effect on thermal conductivity: disorder and characteristic size of each phase could vary with the average lithium content.
Li content has a strong influence on stiffness of bonds in the CoO$_2$ sheets

- Our samples are not textured so the change in longitudinal modulus is most due to C_{11} (stretch/compress along a-b plane)

- Higher Li content \rightarrow greater electron density in the CoO$_2$ sheets \rightarrow increased bond strengths (?)
Summary

- Time-domain thermoreflectance and picosecond acoustics enable real-time measurements of thermal conductivity and elastic constants of electrode materials.

- Contrast between low and high thermal conductivity states of Li$_x$CoO$_2$ up to a factor of 2.7.

- Working on getting full set of elastic constants: by experiment (surface-acoustic waves; orientation dependence) and theory (DFT by Prof. Elif Ertekin).

- **Changes in longitudinal elastic modulus are linear in** x; i.e., virtual crystal or effective medium seems to apply.

- **Changes in thermal conductivity are not linear in** x and show a plateau for $0.5 < x < 0.8$.

 — Speculate that this is caused by changing mixture of phases.